Álgebra (i)

1 - Una matriz en la que sus elementos tienen igual parte real pero cambiado de signo la parte imaginaria a otra matriz se llama:


2 - Una matriz igual a su simetrica cambiada de signo se llama:


3 - La suma de matrices cumple la propiedad asociativa


4 - El producto de matrices cumple la propiedad conmutativa


5 - (A B) traspuesta vale:


6 - Una matriz se llama ortogonal si:


7 - Una matriz regular es aquella matriz que:


8 - El nucleo de una aplicación entre dos espacios vectoriales V y W en el mismo cuerpo K es


9 - La imagen de la aplicación lineal f es:


10 - Un isomorfismo es:


11 - Si B es una matriz que se obtiene de A intercambiando dos filas, el determinante de B vale:


12 - Si B es la matriz que se obtiene de A multiplicando una de sus filas por un número a su determinante vale:


13 - Si en la matriz A descomponemos una de sus filas como suma de dos vectores y consideremos las dos matrices B y C que se obtienen de estas dos nuevas filas, conservando las demás filas de A, entonces:


14 - El determinante de la inversa de A vale la inversa del determinante de A


15 - El rango de A por B:


Corregir test